This job board retrieves part of its jobs from: Toronto Jobs | Emplois Montréal | IT Jobs Canada

Find jobs in Texas today!

To post a job, login or create an account |  Post a Job

  Jobs in Texas  

Bringing the best, highest paying job offers near you

previous arrow
next arrow

Manager, Machine Learning Engineering

Capital One

This is a Full-time position in FRISCO, TX posted June 9, 2021.

Locations: VA – McLean, United States of America, McLean, Virginia

Manager, Machine Learning Engineering

As a Capital One Machine Learning Engineer, you’ll be part of an Agile team dedicated toproductionizing machine learning applications and systems at scale. You’ll participate in thedetailed technical design, development, and implementation of machine learning applicationsusing existing and emerging technology platforms. Working within an Agile environment, you’llserve as a technical lead, helping guide machine learning architectural design decisions,developing and reviewing model and application code, and ensuring high availability andperformance of our machine learning applications. You’ll have the opportunity to continuouslylearn and apply the latest innovations and best practices in machine learning engineering. You’llalso mentor other engineers and develop your technical knowledge and skills to keep CapitalOne at the cutting edge of technology. 

What you’ll do in the role: 

? Deliver ML software models and components that solve real-world business problems, while working in collaboration with the Product and Data Science teams.

? Solve complex problems by writing and testing application code, developing and validating ML models, and automating tests and deployment. 

? Collaborate as part of a cross-functional Agile team to create and enhance software that enables state-of-the-art, next generation big data and machine learning applications.

? Leverage cloud-based architectures and technologies to deliver optimized ML models atscale. 

? Construct optimized data pipelines to feed ML models. 

? Use programming languages like Python, Scala, or Java. 

? Leverage continuous integration and continuous deployment best practices, includingtest automation and monitoring, to ensure successful deployment of ML models andapplication code. 

? Advocate for software and machine learning engineering best practices.

? Function as a technical lead. 

? Mentor junior engineering talent. 

Basic Qualifications 

? Bachelor’s degree. 

? At least 6 years of experience designing and building data-intensive solutions using distributed computing. 

? At least 4 years of experience programming with Python, Scala, or Java.

? At least 2 years of experience building, scaling, and optimizing ML systems.

? At least 1 year of experience with the full ML development lifecycle using moderntechnology in a business critical setting. 

Preferred Qualifications

? Master’s or doctoral degree in computer science, electrical engineering, mathematics, or a similar field.

? At least 3 years of experience building production-ready data pipelines that feed ML models. 

? At least 3 years of on-the-job experience with an industry recognized ML framework such as scikit-learn, PyTorch, Dask, Spark, or TensorFlow. 

? At least 2 years of experience developing performant, resilient, and maintainable code.

? At least 2 years of experience with data gathering and preparation for ML models.

? At least 2 years of people leader experience. 

? At least 1 year of experience leading teams developing ML solutions using industry best practices, patterns, and automation. 

? Experience developing and deploying ML solutions in a public cloud such as AWS, Azure, or Google Cloud Platform. 

? Experience designing, implementing, and scaling complex data pipelines for ML models and evaluating their performance. 

? ML industry impact through conference presentations, papers, blog posts, open source contributions, or patents. 

At this time, Capital One will not sponsor a new applicant for employment authorization for this position.

Please add your adsense or publicity code here (inc/structure/adsfooter.php)